Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Conference object
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2023
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Automation of Life Cycle Assessment—A Critical Review of Developments in the Field of Life Cycle Inventory Analysis

Authors: Bianca Köck; Anton Friedl; Sebastián Serna Loaiza; Walter Wukovits; Bettina Mihalyi-Schneider;

Automation of Life Cycle Assessment—A Critical Review of Developments in the Field of Life Cycle Inventory Analysis

Abstract

The collection of reliable data is an important and time-consuming part of the life cycle inventory (LCI) phase. Automation of individual steps can help to obtain a higher volume of or more realistic data. The aim of this paper is to survey the current state of automation potential in the scientific literature published between 2008 and 2021, with a focus on LCI in the area of process engineering. The results show that automation was most frequently found in the context of process simulation (via interfaces between software), for LCI database usage (e.g., via using ontologies for linking data) and molecular structure models (via machine learning processes such as artificial neural networks), which were also the categories where the highest level of maturity of the models was reached. No further usage could be observed in the areas of automation techniques for exploiting plant data, scientific literature, process calculation, stoichiometry and proxy data. The open science practice of sharing programming codes, software or other newly created resources was only followed in 20% of cases, uncertainty evaluation was only included in 10 out of 30 papers and only 30% of the developed methods were used in further publication, always including at least one of the first authors. For these reasons, we recommend encouraging exchange in the LCA community and in interdisciplinary settings to foster long-term sustainable development of new automation methodologies supporting data generation.

Keywords

Environmental sciences, machine learning, life cycle assessment, Environmental effects of industries and plants, molecular modeling, life cycle inventory automation, TJ807-830, GE1-350, TD194-195, knowledge engineering, digital twins, Renewable energy sources

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Top 10%
Top 10%
Top 10%
gold
Related to Research communities
Energy Research