Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2023
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Monodispersed NiO Nanoparticles into SBA-15: An Efficient Nanocatalyst to Produce Ketone-Alcohol (KA) Oil by the Oxidation of Cyclohexane in Mild Conditions

Authors: Mohamed Abboud; Reem S. Alnefaie; Asla A. AL-Zahrani; Nabil Al-Zaqri; Mohammad Abu Haija; Azza Al-Ghamdi; Mabkhoot Alsaiari; +3 Authors

Monodispersed NiO Nanoparticles into SBA-15: An Efficient Nanocatalyst to Produce Ketone-Alcohol (KA) Oil by the Oxidation of Cyclohexane in Mild Conditions

Abstract

A simple and efficient approach to preparing highly efficient and reusable NiO@SBA-15 nanocatalysts for the oxidation of cyclohexane to produce ketone-alcohol (KA) oil was reported. These nanocatalysts were prepared by the dispersion of NiO NPs into SBA-15 using a coordination-assisted grafting method. In this approach, four commercially available nickel salts were immobilized into amino-functionalized SBA-15. After washing and calcination, four new nanocatalysts were obtained. The high dispersion of NiO NPs into SBA-15 was confirmed by HR-TEM and XRD. Different oxidants such as O2, H2O2, t-butyl hydrogen peroxide (TBHP), and meta-Chloroperoxybenzoic acid (m-CPBA) were evaluated. However, m-CPBA exhibited the highest catalytic activity. Compared to different catalysts reported in the literature, for the first time, 75–99% of cyclohexane was converted to KA oil over NiO@SBA-15. In addition, the cyclohexane conversion and K/A ratio were affected by the reaction time, catalyst dose, Ni content, and NiO dispersion. Moreover, NiO@SBA-15 maintained a high catalytic activity during five successive cycles.

Keywords

coordination-assisted grafting method, Environmental sciences, cyclohexane oxidation, amino-functionalized SBA-15, <i>m</i>-CPBA, Environmental effects of industries and plants, KA oil, TJ807-830, GE1-350, TD194-195, monodispersed NiO NPs, Renewable energy sources, cyclohexane oxidation; KA oil; monodispersed NiO NPs; amino-functionalized SBA-15; coordination-assisted grafting method; <i>m</i>-CPBA

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold
Related to Research communities
Energy Research