Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2023
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Determining the Safe Distance for Mining Equipment Operation When Forming an Internal Dump in a Deep Open Pit

Authors: Oleg Bazaluk; Oleh Anisimov; Pavlo Saik; Vasyl Lozynskyi; Oleksandr Akimov; Leonid Hrytsenko;

Determining the Safe Distance for Mining Equipment Operation When Forming an Internal Dump in a Deep Open Pit

Abstract

In the surface mining of mineral deposits, land resources suitable for agricultural purposes are inappropriately spent in large volumes. When mining deep open pits, overburden rocks are mainly transported to the surface. The optimal solution for reducing the area of disturbed lands is the placement of overburden rocks in internal dumps in the open pit. This is especially suitable when mining a mineral deposit with several open pits where at least one of them is depleted. Therefore, it is important to assess the feasibility of building an internal dump, based on the stability parameters of its slopes and the safe distance for placing mining equipment within its boundaries, which was the focus of this research. Numerical modeling with Slide 5.0 software was used to determine the stability of the dump slope inside the open pit and the safe distance from the upper slope edge for placing mining equipment. This reflected the geomechanical situation occurring within the boundaries of the dump formed in the open-pit field with a high degree of reliability. It was determined that the maximum standard safety factor values of the open-pit slopes are within the limits when the overburden rocks border on the hard bedrock (Ks.s.f ≥ 1.2). Under the condition where the dump slope bordered on sedimentations represented by clays, loams, and sands with a strength of 2–3 on the Mohs scale, the safety factor decreased by 22%. It was determined that the minimum safe distance from the outer contour of the dragline base to the upper edge of a single-tier dump was 15.5 m with a safety factor of 1.21. The maximum safe distance values in the range of 73.5–93 m were concentrated within the boundaries of sections 5–9, with a safety factor from 1.18 to 1.28. When the dragline was located within the boundaries of section 7, the dump construction works should be conducted only if the dump exist for up to 3 years. Based on the identified parameters, on the example of using the ESH-11/70 walking dragline, a technological scheme of its operation was developed with the allocation of safe boundaries for its placement when forming an internal dump. The results obtained are useful for the development of projects for the reclamation of depleted open pits.

Keywords

dragline, Environmental sciences, reclamation, Environmental effects of industries and plants, dump slope, TJ807-830, GE1-350, safety factor, open pit; reclamation; overburden rocks; dump slope; safety factor; dragline, open pit, overburden rocks, TD194-195, Renewable energy sources

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Top 10%
Top 10%
gold
Related to Research communities
Energy Research