Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2023
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Optimizing Traffic Flow in Smart Cities: Soft GRU-Based Recurrent Neural Networks for Enhanced Congestion Prediction Using Deep Learning

Authors: Sura Mahmood Abdullah; Muthusamy Periyasamy; Nafees Ahmed Kamaludeen; S. K. Towfek; Raja Marappan; Sekar Kidambi Raju; Amal H. Alharbi; +1 Authors

Optimizing Traffic Flow in Smart Cities: Soft GRU-Based Recurrent Neural Networks for Enhanced Congestion Prediction Using Deep Learning

Abstract

Recently, different techniques have been applied to detect, predict, and reduce traffic congestion to improve the quality of transportation system services. Deep learning (DL) is becoming increasingly valuable for solving critiques. DL applications in transportation have been collected in several recently published surveys over the last few years. The existing research has discussed the cloud environment, which does not provide timely traffic forecasts, which is the cause of frequent traffic accidents. Thus, a solid understanding of the difficulties in predicting congestion is required because the transportation system varies widely between non-congested and congested states. This research develops a bi-directional recurrent neural network (BRNN) using Gated Recurrent Units (GRUs) to extract and classify traffic into congested and non-congested. This research uses a bidirectional recurrent neural network to simulate and forecast traffic congestion in smart cities (BRNN). Urban regions worldwide struggle with traffic congestion, and conventional traffic control techniques have failed miserably. This research suggests a data-driven approach employing BRNN for traffic management in smart cities, which uses real-time data from sensors and linked devices to control traffic more efficiently. The primary measures include predicting traffic metrics such as speed, weather, current, and accident probability. Congestion prediction performance has also been improved by extracting more features such as traffic, road, and weather conditions. The proposed model achieved better measures than the existing state-of-the-art methods. This research also explores an overview and analysis of several early initiatives that have shown promising results; moreover, it explores two potential future research approaches to increase the accuracy and efficiency of large-scale motion prediction.

Keywords

Environmental effects of industries and plants, TJ807-830, TD194-195, bidirectional neural, Renewable energy sources, Environmental sciences, transportation systems, traffic congestion, recurrent neural networks, GE1-350, congestion prediction; traffic congestion; transportation systems; recurrent neural networks; bidirectional neural; traffic load; deep learning; gated recurrent unit, congestion prediction, traffic load

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    49
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
49
Top 10%
Top 10%
Top 1%
gold
Related to Research communities
Energy Research