Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2023
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Consequential Life Cycle Assessment of Grain and Oilseed Crops: Review and Recommendations

Authors: Nicole Bamber; Ian Turner; Baishali Dutta; Mohammed Davoud Heidari; Nathan Pelletier;

Consequential Life Cycle Assessment of Grain and Oilseed Crops: Review and Recommendations

Abstract

The field crop industry in Canada is a source of both significant economic benefits and environmental impacts. Environmental impacts include land and energy use, as well as greenhouse gas (GHG) and other emissions. Impacts also accrue upstream of the field in the product supply chain, from the production of such inputs as fertilizers and pesticides. There are currently two types of environmental life cycle assessment (LCA)—attributional LCA (ALCA) and consequential LCA (CLCA)—that may be used to study the life cycle impacts of products such as field crops. ALCA is a retrospective methodology that presents a snapshot of average, “status quo” conditions. CLCA is a prospective methodology that presents the potential implications of changes in a product system, including any associated market-mediated changes in supply or demand in other product systems. Thus, CLCAs can be used to assess large-scale changes in the field crop industry, including its relationship to other sectors and processes, such as the production of biofuel or of food for both human and animal consumption. The aim of this paper is to review and curate the knowledge derived through published CLCA studies that assessed the impacts of changes to field crop production systems on the life cycle resource use and emissions associated with the agricultural products, with a focus on their relevance to temperate climate conditions. The current study also highlights how previous studies, including ALCAs and farm management recommendations, can be used to inform the changes that should be studied using CLCA. The main challenges to conducting CLCAs include identifying the system boundaries, marginal products and processes that would be impacted by changes to field crop production. Marginal markets and product systems to include can be determined using economic equilibrium models, or information from local experts and industry reports. In order to conduct ISO-compliant CLCAs, it is necessary to include multiple relevant environmental impact categories, and to perform robust data quality and uncertainty analyses.

Keywords

Environmental effects of industries and plants, TJ807-830, consequential life cycle assessment, TD194-195, Renewable energy sources, Environmental sciences, field crops, temperate climate, GE1-350, ISO 14040/44

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
gold