Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2023
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Comparative Assessment of Ethanol and Methanol–Ethanol Blends with Gasoline in SI Engine for Sustainable Development

Authors: Muhammad Usman; Muhammad Ali Ijaz Malik; Tariq Nawaz Chaudhary; Fahid Riaz; Sohaib Raza; Muhammad Abubakar; Farrukh Ahmad Malik; +4 Authors

Comparative Assessment of Ethanol and Methanol–Ethanol Blends with Gasoline in SI Engine for Sustainable Development

Abstract

Growing environmental concerns over global warming and depleting fossil fuel reserves are compelling researchers to investigate green fuels such as alcoholic fuels that not only show the concrete decrement in emissions but also enhance engine performance. The current study emphasizes the influence of different alcoholic fuel blends in gasoline on engine performance and emissions for an engine speed ranging from 1200 to 4400 rpm. The obtained performance results demonstrate that the brake power and brake thermal efficiency (BTE) increased with an incrementing blend percentage of ethanol and methanol in gasoline (EM). The minimum brake specific fuel consumption (BSFC) was ascertained using pure gasoline followed by E2 and then E5M5. The NOx and CO2 emissions can be described in the decreasing order of E, EM and gasoline due to same trend of exhaust gas temperature (EGT). CO results were in reverse order of CO2. HC emissions were found in the increasing order of E, EM and pure gasoline. E10 performed better among all blends in terms of less exhaust emissions and engine performance. However, EM blended with gasoline significantly reduced NOx. E5M5 produced 1.9% lower NOx emission compared to E10 owing to 1.2% lower EGT. Moreover, greenhouse gases such as CO2, which is mainly responsible for global warming reducing by 1.1% in case E5M5 as compared to E10.

Keywords

ethanol–methanol blends, Environmental effects of industries and plants, TJ807-830, ethanol blends, TD194-195, Renewable energy sources, Environmental sciences, engine performance parameters, SI engine; ethanol blends; ethanol–methanol blends; engine performance parameters; engine exhaust emissions, GE1-350, SI engine, engine exhaust emissions

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Top 10%
Average
Top 10%
gold