Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2023
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Energy Schedule Setting Based on Clustering Algorithm and Pattern Recognition for Non-Residential Buildings Electricity Energy Consumption

Authors: Cui, Yu; Zhu, Zishang; Zhao, Xudong; Li, Zhaomeng;

Energy Schedule Setting Based on Clustering Algorithm and Pattern Recognition for Non-Residential Buildings Electricity Energy Consumption

Abstract

Building energy modelling (BEM) is crucial for achieving energy conservation in buildings, but occupant energy-related behaviour is often oversimplified in traditional engineering simulation methods and thus causes a significant deviation between energy prediction and actual consumption. Moreover, the conventional fixed schedule-setting method is not applicable to the recently developed data-driven BEM which requires a more flexible and data-related multi-timescales schedule-setting method to boost its performance. In this paper, a data-based schedule setting method is developed by applying K-medoid clustering with Principal Component Analysis (PCA) dimensional reduction and Dynamic Time Warping (DTW) distance measurement to a comprehensive building energy historical dataset, partitioning the data into three different time scales to explore energy usage profile patterns. The Year–Month data were partitioned into two clusters; the Week–Day data were partitioned into three clusters; the Day–Hour data were partitioned into two clusters, and the schedule-setting matrix was developed based on the clustering result. We have compared the performance of the proposed data-driven schedule-setting matrix with default settings and calendar data using a single-layer neural network (NN) model. The findings show that for the data-driven predictive BEM, the clustering results-based data-driven schedule setting performs significantly better than the conventional fixed schedule setting (with a 25.7% improvement) and is more advantageous than the calendar data (with a 9.2% improvement). In conclusion, this study demonstrates that a data-related multi-timescales schedule matrix setting method based on cluster results of building energy profiles can be more suitable for data-driven BEM establishment and can improve the data-driven BEMs performance.

Country
United Kingdom
Related Organizations
Keywords

energy schedule; occupation behavior; k-medoids clustering; Dynamic Time Warping distance, occupation behavior, Environmental effects of industries and plants, TJ807-830, 600, Occupation behavior, TD194-195, Renewable energy sources, 620, energy schedule, Environmental sciences, k-medoids clustering, Dynamic Time Warping distance, GE1-350, Energy schedule

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%
Green
gold