Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2023
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An Enhanced AC Fault Ride through Scheme for Offshore Wind-Based MMC-HVDC System

Authors: Jahangeer Badar Soomro; Dileep Kumar; Faheem Akhtar Chachar; Semih Isik; Mohammed Alharbi;

An Enhanced AC Fault Ride through Scheme for Offshore Wind-Based MMC-HVDC System

Abstract

This study presents an improved, communication-free Fault Ride-Through (FRT) strategy for type-3 and type-4 wind turbine integrated modular multilevel converter-based high-voltage direct current (MMC-HVDC) systems in offshore wind power plants (OWPPs). The research aims to enhance the reliability and resilience of OWPPs by ensuring their connection with AC grids remains intact during and after faults. Simulation results conducted on a 580 kV, 850 MW MMC-HVDC system using PSCAD/EMTDC software v.4.6.2 demonstrate quick post-fault recovery operation and the ability to effectively manage DC link and capacitor voltages within safe limits. Furthermore, the circulating current (CC) and capacitor voltage ripple (CVR) remain within acceptable limits, ensuring safe and reliable operation. The study’s major conclusion is that the proposed FRT strategy effectively mitigates the adverse effects of short circuit faults, such as a rapid rise in DC-link voltage, on the performance of the MMC-HVDC system. By promptly suppressing DC-link overvoltage, the proposed FRT scheme prevents compromising the safe operation of various power electronics equipment. These findings highlight the significance of FRT capability in OWPPs and emphasize the practical applicability of the proposed strategy in enhancing the reliability of offshore wind power generation.

Keywords

Environmental effects of industries and plants, offshore wind integration; modular multilevel converters; capacitor voltage ripples; circulating current; MMC-HVDC; fault ride through, TJ807-830, circulating current, modular multilevel converters, TD194-195, Renewable energy sources, Environmental sciences, fault ride through, capacitor voltage ripples, GE1-350, MMC-HVDC, offshore wind integration

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Top 10%
gold