
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Green Synthesis of Nanoparticles Mediated by Deep Eutectic Solvents and Their Applications in Water Treatment

doi: 10.3390/su15129703
The use of environmentally friendly deep eutectic solvents (DES) in green synthesis of different types of nanoparticles has garnered increasing interest in recent years. The application of these materials in water treatment, mainly by adsorption or degradation, is emerging as a sustainable alternative to conventional methodologies. However, the information about the green synthesis of nanoparticles (NPs) using DES is dispersed in the literature. This review is focused on compiling and systematizing information regarding DES-mediated NP synthesis, the application of these NPs in water treatment, and future perspectives of these technologies. DES represent an excellent alternative to traditional solvents in NP synthesis due to their low toxicity, low cost, and being environmentally friendly. The possible NP surface functionalization with DES is also attractive as it plays a pivotal role in processes related to water treatment. Modification and synthesis of carbon nanotubes, graphene oxides, magnetic iron oxides, among others, for the adsorption and degradation of organic dyes, pharmaceuticals, metal ions, herbicides, pesticides, and other water contaminants found in recent literature are presented in this work. Finally, the possibility to control NP size and shape can be helpful in the design of new materials for a specific application.
- Universidad San Francisco de Quito Ecuador
- Universidad San Francisco de Quito Ecuador
Environmental effects of industries and plants, contaminant adsorption, green synthesis, TJ807-830, TD194-195, Renewable energy sources, Environmental sciences, contaminant degradation, nanoparticles, GE1-350, nanomaterials, deep eutectic solvents
Environmental effects of industries and plants, contaminant adsorption, green synthesis, TJ807-830, TD194-195, Renewable energy sources, Environmental sciences, contaminant degradation, nanoparticles, GE1-350, nanomaterials, deep eutectic solvents
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).19 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
