Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2023
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Development and Characterization of Polymeric Composites Reinforced with Lignocellulosic Wastes for Packaging Applications

Authors: Muhammad Sulaiman; Fahad Ali Rabbani; Tanveer Iqbal; Fahid Riaz; Muhammad Raashid; Nehar Ullah; Saima Yasin; +3 Authors

Development and Characterization of Polymeric Composites Reinforced with Lignocellulosic Wastes for Packaging Applications

Abstract

In this work, the effects of different fiber loadings on the mechanical properties of the composites at the sub-micron scale were studied through nanoindentation followed by physical characterization. The composites were prepared by incorporating different loadings of wheat straw, corn stalk, and rice husk in polypropylene copolymer using a melt processing method followed by thermal–hydraulic compression technique. Nanoindentation experiments in quasi-continuous stiffness mode were performed on the surfaces of produced composites to study the composites’ elastic modulus, hardness, and creep properties. The obtained results expressed the in-depth study of the micro- and macro-level structure and behavior of particle interactions. The findings demonstrated that observable shifts in composites’ hardness, elastic modulus, and creep rate had occurred. The WS-reinforced biocomposite sheet showed the highest elastic modulus of 1.09 and hardness of 0.11 GPa at 40 wt% loading in comparison to other loadings. An impact strength of 7.55 kJ/m2 was noted for the biocomposite at 40 wt% RH loading. In addition, optical microscopy, Fourier transform infrared spectroscopy, water absorption, thickness swelling, and Vicat softening point studies were conducted on biocomposite sheets to evaluate differences in physical, mechanical, and thermal properties. The outstanding mechanical performance of the newly developed composites makes them suitable for use as a biodegradable packaging material.

Keywords

softening point, nanoindentation, Environmental effects of industries and plants, polymer, TJ807-830, TD194-195, Izod impact strength, Renewable energy sources, Environmental sciences, water absorption, GE1-350, agricultural waste; nanoindentation; polymer; softening point; Izod impact strength; water absorption, agricultural waste

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
gold
Related to Research communities
Energy Research