
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Bioleaching Techniques for Sustainable Recovery of Metals from Solid Matrices

doi: 10.3390/su151310222
Bioleaching Techniques for Sustainable Recovery of Metals from Solid Matrices
This review paper explores the potential of bioleaching as a sustainable alternative for recovering metals from solid matrices. With over 12 billion tons of solid waste annually worldwide, bioleaching provides a promising opportunity to extract metals from solid waste, avoiding harmful chemical processes. It explains bacterial and fungal bioleaching techniques that extract copper, gold, zinc, and other metals from solid matrices. Fungal bioleaching effectively extracts a wide range of valuable metals, including nickel, vanadium, aluminium, molybdenum, cobalt, iron, manganese, silver, platinum, and palladium. The review highlights different solid matrices with metal contents that have the potential to be recovered by bioleaching, presenting promising bioprocess alternatives to current industrially available technologies for metal recovery. The optimal conditions for bioleaching, including pH, temperature, agitation–aeration, and pulp density are also discussed. The review shows that bioleaching has the potential to play a crucial role in the transition to a more sustainable and circular economy by providing an efficient, cost-effective, and environmentally friendly method for metal recovery from solid matrices.
- Pontificia Universidad Javeriana Colombia
- Pontificia Universidad Javeriana Colombia
Environmental effects of industries and plants, biological extraction, metals, TJ807-830, bioprocess, TD194-195, Renewable energy sources, industrial waste, Environmental sciences, GE1-350, agricultural waste, biosorption
Environmental effects of industries and plants, biological extraction, metals, TJ807-830, bioprocess, TD194-195, Renewable energy sources, industrial waste, Environmental sciences, GE1-350, agricultural waste, biosorption
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).15 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
