
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Waste Generation Modeling Using System Dynamics with Seasonal and Educational Considerations

doi: 10.3390/su15139995
Effective waste management is critical to environmental sustainability and public health. Various dynamics, such as seasonal changes and waste education programs, influence solid waste generation, increasing the complexity of prediction. This is important, as the proper prediction of waste quantity is necessary to develop a sustainable waste management system. In this study, municipal solid waste (MSW) management is examined in Regina, the capital city of Saskatchewan, Canada. A system dynamics (SD) model is developed to evaluate garbage and recyclable waste generation behaviours in Regina across four seasons. Three years of Regina landfill waste generation records (2016–2018) are considered to analyze and predict seasonal waste-generation trends. The effect of various factors, such as gross domestic product (GDP), population, and education attainment on the amount of waste generation is considered in the SD model. The SD model is designed as a stock-flow diagram to illustrate the relationships between variables and predict the next three years of waste trends. This finding highlights the importance of waste education and awareness program and seasonal effects on the accuracy of SD waste modeling.
- University of Regina Canada
- University of Regina Canada
municipal solid waste management; system dynamics; seasonal variation; recyclable waste; education and awareness; recycling behaviors, seasonal variation, recyclable waste, Environmental effects of industries and plants, TJ807-830, education and awareness, TD194-195, Renewable energy sources, recycling behaviors, Environmental sciences, municipal solid waste management, system dynamics, GE1-350
municipal solid waste management; system dynamics; seasonal variation; recyclable waste; education and awareness; recycling behaviors, seasonal variation, recyclable waste, Environmental effects of industries and plants, TJ807-830, education and awareness, TD194-195, Renewable energy sources, recycling behaviors, Environmental sciences, municipal solid waste management, system dynamics, GE1-350
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).6 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
