
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Comprehensive Performance of Green Infrastructure through a Life-Cycle Perspective: A Review

doi: 10.3390/su151410857
Climate change represents a paramount challenge for humanity in the 21st century. Green infrastructure (GI), due to its myriad environmental and societal benefits, has emerged as an essential natural life support system and a pivotal strategy to combat climate change-induced risks. Consequently, GI has garnered considerable global interest. As of now, comprehensive and systematic environmental impact assessments of GI are underway worldwide. Nonetheless, there remains a conspicuous scarcity of life-cycle approaches to delineate the evolutionary trajectory of this domain. Employing three bibliometric software tools—the R language “Bibliometrix” package (version 4.0.1), CiteSpace (version 6.2.R2 Basic), and “VOSviewer” (version 1.6.18)—this study scrutinizes the progression of the GI paradigm until 2022. An exhaustive review of 1124 documents published on the Web of Science between 1995 and 2022 facilitates an overarching evaluation of GI, encompassing environmental, economic, and social facets from a life-cycle standpoint. The analysis results reveal that (1) the majority of current studies accentuate the economic and environmental efficacy of GI throughout its life cycle, with the social performance receiving comparatively less focus, potentially due to the difficulties in formulating a social life-cycle-assessment database; (2) contemporary research predominantly concentrates on the life-cycle carbon footprint of GI, warranting further exploration into its water and carbon footprints; and (3) multi-objective optimization emerges as a promising avenue for future GI investigations. This review thus furnishes a comprehensive understanding of the performance of GI from a life-cycle perspective.
- Tun Hussein Onn University of Malaysia Malaysia
- Guangzhou University China (People's Republic of)
- Guangdong Provincial Architectural Design and Research Institute China (People's Republic of)
- Guangzhou University China (People's Republic of)
- Tun Hussein Onn University of Malaysia Malaysia
green roof, constructed wetland, Environmental effects of industries and plants, bioretention, TJ807-830, TD194-195, Renewable energy sources, Environmental sciences, green infrastructure, life cycle, GE1-350, low impact development
green roof, constructed wetland, Environmental effects of industries and plants, bioretention, TJ807-830, TD194-195, Renewable energy sources, Environmental sciences, green infrastructure, life cycle, GE1-350, low impact development
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).2 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
