Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2023
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 8 versions

Probing the Pyrolysis Process of Rice Straw over a “Dual-Catalyst Bed” for the Production of Fuel Gases and Value-Added Chemicals

Authors: Ikram Uddin; Muhammad Sohail; Muhammad Ijaz Hussain; Norah Alhokbany; Juan Amaro-Gahete; Rafael Estévez;

Probing the Pyrolysis Process of Rice Straw over a “Dual-Catalyst Bed” for the Production of Fuel Gases and Value-Added Chemicals

Abstract

Rice straw is an agricultural byproduct primarily produced in Asian regions. It is crucial to discover an effective method for converting this waste into chemicals that can be utilized to substitute goods derived from fossil fuels. Pyrolysis serves as an interesting procedure to obtain bio-oil from this rice straw. The composition of the bio-oil obtained after the pyrolysis procedure contains a small quantity of value-added chemicals in addition to various gas components in the gas product. Therefore, the development of catalytic systems that improve this pyrolytic reaction is mandatory. Herein, the design of a dual catalyst bed (CEM/ZSM-5) that catalyzes the volatiles that it releases has been developed. The highest output of 42.1 wt.% of bio-oil, 29.9 wt.% of gases and 28.0 wt.% of bio-char was obtained. Nevertheless, the inclusion of single zeolites to biomass yields biofuel outputs of 42.8 wt.%, gas yields of 27.7 wt.%, and a bio-char yielding of 29.5 wt.%. Additionally, the addition of cement to biomass results in a bio-oil yield of 40.4 wt.% and 30.5 wt.% of gas, along with 29.1 wt.% of char. Regarding pyrolysis gas products, the H2 yield in the produced biogas was increased from 35.9 mL/g to 45.7 mL/g, and the CH4 output was increased from 21.1 mL/g to 27.4 mL/g. The bioenergy output was evaluated employing GC-FID and GC-MS (gas and biofuel). The dual catalytic bed had a significant impact on the contents of the generated biofuel, increasing the quantity of hydrocarbons and other value-added compounds.

Country
Spain
Keywords

cement, Zeolite, biomass, Environmental effects of industries and plants, Cement, TJ807-830, Bio-oil, TD194-195, Renewable energy sources, Fixed bed reactor, Environmental sciences, fixed bed reactor, bio-oil, GE1-350, Biomass, zeolite, biomass; bio-oil; cement; zeolite; fixed bed reactor

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold
Related to Research communities
Netherlands Research Portal