Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2023
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Uses of Bamboo for Sustainable Construction—A Structural and Durability Perspective—A Review

Authors: Sumeera Madhushan; Samith Buddika; Sahan Bandara; Satheeskumar Navaratnam; Nandana Abeysuriya;

Uses of Bamboo for Sustainable Construction—A Structural and Durability Perspective—A Review

Abstract

Bamboo is a natural biodegradable material used as a strength-bearing material that operates for system works, formwork supporting stands, structural members in low-rise houses, props, framing, bridges, laminated flooring, facades, walls, roofs, and trusses. Over recent years, there has been an increased demand for bamboo, considering sustainable construction practices. Exploring bamboo’s physical and mechanical behaviour is essential to develop innovative construction methods and design guidelines. Therefore, this paper aims to review the studies on bamboo culms’ material properties and physical behaviour, considering the load-bearing capacity and structural adequacy. This study summarises the physical and mechanical properties of a wide array of bamboo species grown worldwide. Mechanical properties such as compressive, tensile, flexural, shear, and bucking strengths are explored, highlighting the key findings in previous experimental works. Results have indicated a significant variability in bamboo’s material and mechanical properties considering the growth conditions, location along a culm, geometric imperfections and environmental conditions. In addition to material and mechanical properties, structural bamboo connections, engineered bamboo products, and preservative treatment of bamboo are also investigated. The construction industry can utilise the summary of the findings of this study to develop design guidelines for sustainable bamboo construction. Overall, this paper presents an overview of structural capability and drawbacks for future research and development using bamboo in modern construction.

Keywords

bamboo, treatment, Environmental effects of industries and plants, structural performance, TJ807-830, TD194-195, connections, Renewable energy sources, Environmental sciences, cross-laminated bamboo, GE1-350

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Top 10%
Top 10%
Top 10%
gold
Related to Research communities
Energy Research