
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Early Detection of Earthquakes Using IoT and Cloud Infrastructure: A Survey

doi: 10.3390/su151511713
Earthquake early warning systems (EEWS) are crucial for saving lives in earthquake-prone areas. In this study, we explore the potential of IoT and cloud infrastructure in realizing a sustainable EEWS that is capable of providing early warning to people and coordinating disaster response efforts. To achieve this goal, we provide an overview of the fundamental concepts of seismic waves and associated signal processing. We then present a detailed discussion of the IoT-enabled EEWS, including the use of IoT networks to track the actions taken by various EEWS organizations and the cloud infrastructure to gather data, analyze it, and send alarms when necessary. Furthermore, we present a taxonomy of emerging EEWS approaches using IoT and cloud facilities, which includes the integration of advanced technologies such as machine learning (ML) algorithms, distributed computing, and edge computing. We also elaborate on a generic EEWS architecture that is sustainable and efficient and highlight the importance of considering sustainability in the design of such systems. Additionally, we discuss the role of drones in disaster management and their potential to enhance the effectiveness of EEWS. Furthermore, we provide a summary of the primary verification and validation methods required for the systems under consideration. In addition to the contributions mentioned above, this study also highlights the implications of using IoT and cloud infrastructure in early earthquake detection and disaster management. Our research design involved a comprehensive survey of the existing literature on early earthquake warning systems and the use of IoT and cloud infrastructure. We also conducted a thorough analysis of the taxonomy of emerging EEWS approaches using IoT and cloud facilities and the verification and validation methods required for such systems. Our findings suggest that the use of IoT and cloud infrastructure in early earthquake detection can significantly improve the speed and effectiveness of disaster response efforts, thereby saving lives and reducing the economic impact of earthquakes. Finally, we identify research gaps in this domain and suggest future directions toward achieving a sustainable EEWS. Overall, this study provides valuable insights into the use of IoT and cloud infrastructure in earthquake disaster early detection and emphasizes the importance of sustainability in designing such systems.
- Center for Advanced Systems Understanding Germany
- Istanbul University Cerrahpaşa Turkey
- National Research Institute of Astronomy and Geophysics Egypt
- University of Turku Finland
- Dar Al-Hekma University Saudi Arabia
Environmental effects of industries and plants, earthquake early warning system (EEWS), TJ807-830, TD194-195, internet of things, Renewable energy sources, Environmental sciences, drones, disaster, cloud systems, GE1-350, management
Environmental effects of industries and plants, earthquake early warning system (EEWS), TJ807-830, TD194-195, internet of things, Renewable energy sources, Environmental sciences, drones, disaster, cloud systems, GE1-350, management
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).35 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
