
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Towards Sustainable Energy: Harnessing Microalgae Biofuels for a Greener Future

doi: 10.3390/su151814029
Bioenergy productions from microalgae have received wide attention recently and have a high potential to replace fossil fuels. Moreover, due to the high photosynthetic efficiency, microalgae mass cultivation and scale-up are believed to efficiently reduce the impact of greenhouse gas emissions. This review article explores the potential of microalgae as a reliable and sustainable source of bioenergy feedstock. The current review article contains an in-depth discussion of the various methods of producing energy using microalgae, viz. algal fuel cell (AFC), microbial fuel cell (MFC), bioethanol and biodiesel, and various other applications. This article discussed the different aspects of AFC and MFC, such as fuel cell configurations, reaction mechanisms at electrodes, reactor design factors affecting the efficiencies, and strategies to enhance the efficiencies. Moreover, microalgae cultivation, value-added compounds (pigments, polysaccharides, unsaturated fatty acids), liquid fuel production, limitations, the global scenario of microalgae biomass-based energy, and significant advancements in this field. In a nutshell, this review serves as a valuable resource for identifying, developing, and harnessing the potential of microalgae as a promising biofuel source.
- Department of Biotechnology India
- Sun Yat-sen University China (People's Republic of)
- Plaksha University India
- Rama University India
- Rama University India
algae, biofuel feedstock, biomass, Environmental effects of industries and plants, TJ807-830, TD194-195, Renewable energy sources, value added products, Environmental sciences, reactor design, GE1-350, algal fuel cells
algae, biofuel feedstock, biomass, Environmental effects of industries and plants, TJ807-830, TD194-195, Renewable energy sources, value added products, Environmental sciences, reactor design, GE1-350, algal fuel cells
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).16 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
