
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Enhancing Biochar Impact on the Mechanical Properties of Cement-Based Mortar: An Optimization Study Using Response Surface Methodology for Particle Size and Content

doi: 10.3390/su152014787
The utilization of agricultural waste, specifically biochar (BC), as an alternative material to conventional Portland cement offers substantial potential for enhancing sustainability within the construction industry. This study investigates how variations in BC particle size and content affect the properties of cement mortar using Response Surface Methodology (RSM). By manipulating BC’s content and particle size in the mortar mixture and analyzing the data with RSM, this study establishes response surface models to predict the relationship between BC characteristics and cement mortar strength. The results demonstrate that the optimal combination for enhancing the mechanical performance of the mortar is achieved when BC particles have a median particle diameter of 51.08 μm and a content of 2.69% of the mixture. Additionally, utilizing scanning electron microscopy (SEM), it is revealed that BC serves as a nucleation site for cement hydration, thereby inducing a more compact and dense microstructure within the cement mortar. Furthermore, BC particles contribute to enhancing the interfacial transition zone between the cement paste and aggregate, leading to increased compressive strength and fracture toughness of the mortar while simultaneously curbing crack propagation.
- South China University of Technology China (People's Republic of)
- State Key Laboratory of Subtropical Building Science China (People's Republic of)
- Guangxi University China (People's Republic of)
- State Key Laboratory of Subtropical Building Science China (People's Republic of)
- Guangxi University China (People's Republic of)
Environmental effects of industries and plants, microstructure, TJ807-830, particle size, mechanical properties, TD194-195, response surface method, Renewable energy sources, Environmental sciences, biochar, GE1-350
Environmental effects of industries and plants, microstructure, TJ807-830, particle size, mechanical properties, TD194-195, response surface method, Renewable energy sources, Environmental sciences, biochar, GE1-350
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).5 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
