
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Few-Shot Learning Approaches for Fault Diagnosis Using Vibration Data: A Comprehensive Review

doi: 10.3390/su152014975
Fault detection and diagnosis play a crucial role in ensuring the reliability and safety of modern industrial systems. For safety and cost considerations, critical equipment and systems in industrial operations are typically not allowed to operate in severe fault states. Moreover, obtaining labeled samples for fault diagnosis often requires significant human effort. This results in limited labeled data for many application scenarios. Thus, the focus of attention has shifted towards learning from a small amount of data. Few-shot learning has emerged as a solution to this challenge, aiming to develop models that can effectively solve problems with only a few samples. This approach has gained significant traction in various fields, such as computer vision, natural language processing, audio and speech, reinforcement learning, robotics, and data analysis. Surprisingly, despite its wide applicability, there have been limited investigations or reviews on applying few-shot learning to the field of mechanical fault diagnosis. In this paper, we provide a comprehensive review of the relevant work on few-shot learning in mechanical fault diagnosis from 2018 to September 2023. By examining the existing research, we aimed to shed light on the potential of few-shot learning in this domain and offer valuable insights for future research directions.
- Hebei University of Technology China (People's Republic of)
- Hebei University of Technology China (People's Republic of)
- University of Huddersfield United Kingdom
- Aston University United Kingdom
- University of Huddersfield United Kingdom
Environmental effects of industries and plants, TJ807-830, fault diagnosis, TD194-195, Renewable energy sources, Environmental sciences, meta-learning, vibration signal, metric-based meta-learning, few-shot learning, GE1-350
Environmental effects of industries and plants, TJ807-830, fault diagnosis, TD194-195, Renewable energy sources, Environmental sciences, meta-learning, vibration signal, metric-based meta-learning, few-shot learning, GE1-350
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).10 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
