Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2023
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Traffic Calming Measures and Their Slowing Effect on the Pedestrian Refuge Approach Sections

Authors: Stanisław Majer; Alicja Sołowczuk;

Traffic Calming Measures and Their Slowing Effect on the Pedestrian Refuge Approach Sections

Abstract

The ever-increasing use of motor vehicles causes a number of traffic safety and community issues, which are particularly severe in cities, accompanied by a scarcity of parking spaces and challenges encountered in road layout alteration projects. The commonly applied solutions include the designation of through streets, the implementation of on-street parking on residential streets, and retrofitted traffic calming measures (TCMs). This article presents the results of the study conducted on a two-way street where the Metered Parking System (MPS) was implemented together with diagonal and parallel parking spaces, refuge islands, horizontal deflection, and lane narrowing by a single-sided chicane. The aim of this study was to identify those TCMs that effectively helped to reduce the island approach speed. The heuristic method was applied to assess the effect of the respective TCMs on reducing the island approach speed, and the key speed reduction determinants were defined using a cause-and-effect diagram and a Pareto chart. The determinants were evaluated with the binary system and tautological inference principles, whereby a determinant was rated as true when it was found in the field, with a simultaneous speed reduction determined in the survey. Determinants that were not confirmed in the field were rated untrue. Comparative analyses were carried out to rate the respective TCMs as effective, moderately effective, or ineffective. In this way, the following three determinants were rated as the most important for speed reduction at refuge islands: free view, visibility of a pedestrian on the right-hand side of the island, and the refuge island surroundings. Although the study was limited to a single street in Poland, the findings may hold true in other countries where similar TCMs are used.

Keywords

Environmental effects of industries and plants, traffic calming measures, TJ807-830, pedestrian refuges, TD194-195, Renewable energy sources, Environmental sciences, TCM, horizontal deflection, refuge islands, GE1-350, reduce speed

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold