Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2023
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Study on a Communication-Based Algorithm to Improve Protection Coordination under High-Impedance Fault in Networked Distribution Systems

Authors: Juan Noh; Seungjun Gham; Myungseok Yoon; Wookyu Chae; Woohyun Kim; Sungyun Choi;

A Study on a Communication-Based Algorithm to Improve Protection Coordination under High-Impedance Fault in Networked Distribution Systems

Abstract

The rising demand for stable power supply in distribution systems has increased the importance of reliable supply. Thus, a networked distribution system (NDS) linked with individual lines is being adopted, gradually replacing the radial distribution system (RDS) currently applied to most distribution systems. Implementing the NDS can lead to various improvements in factors such as line utilization rate, acceptance rates of distributed power, and terminal voltages, while mitigating line losses. However, compared with the RDS, the NDS can experience bidirectional fault currents owing to its interconnected lines, thereby hindering protection coordination, which must be addressed before the NDS can be implemented in real-world power systems. Due to the characteristics of NDS, the reverse fault current is relatively small. However, this phenomenon becomes more severe when the high impedance fault (HIF) occurs. In this paper, the malfunction of protective devices during the HIF is directly verified and analyzed in the NDS. As a result, when the HIF occurs, the issue of the reverse protective device malfunctioning worsens because of a reduction in fault current and a failure in direction detection. To solve this issue, this work proposes a communication-based protection algorithm. Through the comparative verification of the proposed algorithm and the conventional protection method, protection coordination can be secured in the case of an HIF without new devices. It must be highlighted that the proposed method does not affect the settings of the protective device and provides a cost-effective and efficient solution since this algorithm is added independently to the existing relay.

Related Organizations
Keywords

networked distribution system, protection algorithm, Environmental effects of industries and plants, meshed network, radial distribution system, TJ807-830, TD194-195, Renewable energy sources, Environmental sciences, direction detection, protection coordination, GE1-350

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold