Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2023
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Enhanced Non-Communication-Based Protection Coordination and Advanced Verification Method Using Fault Impedance in Networked Distribution Systems

Authors: Juan Noh; Seungjun Gham; Myungseok Yoon; Wookyu Chae; Woohyun Kim; Sungyun Choi;

Enhanced Non-Communication-Based Protection Coordination and Advanced Verification Method Using Fault Impedance in Networked Distribution Systems

Abstract

In recent years, the networked distribution system (NDS), which is normally connected to the distribution line (DL), was actively studied as the topology of the future distribution system for reasons such as improving supply reliability, improving line utilization, and increasing the capacity of distribution generators (DGs). However, the NDS creates new issues in terms of protection coordination because of its bidirectional power flow and fault current flow. The issues associated with conventional protection schemes in the NDS include malfunction of protective devices due to bi-directional fault currents and failure of protection coordination due to communication failures between protective devices. When applying a conventional protection method in the NDS, the protection schemes become complicated, and there is a risk of protection coordination failure due to communication failure between protective devices. To solve this problem, this paper proposes an effective and innovative non-communication-based protection algorithm for protection coordination in the NDS. The proposed protection algorithm utilizes fault impedance characteristics, which allow not only determination of whether a fault occurred, but also the ability to identify the exact fault point. Therefore, the proposed method is expected to be sustainably utilized and contribute to developing protection schemes and devices in various system topologies and scenarios in the future. Additionally, this paper addresses the overall concept of hardware-in-the-loop simulation (HILS) and directly verifies the proposed protection algorithm using HILS. Therefore, this study establishes a sustainable foundation for future research on protection coordination using HILS.

Related Organizations
Keywords

protection algorithm, Environmental effects of industries and plants, TJ807-830, TD194-195, Renewable energy sources, intelligent electronic device (IED), Environmental sciences, networked distribution system (NDS), protection coordination, hardware-in-the-loop simulation (HILS), GE1-350

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold