Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2023
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Relationship between Residential Block Forms and Building Carbon Emissions to Achieve Carbon Neutrality Goals: A Case Study of Wuhan, China

Authors: Haitao Lian; Junhan Zhang; Gaomei Li; Rui Ren;

The Relationship between Residential Block Forms and Building Carbon Emissions to Achieve Carbon Neutrality Goals: A Case Study of Wuhan, China

Abstract

Controlling building carbon emissions (CEs) is key to achieving the goal of carbon neutrality. Residential blocks are the main contributors of buildings’ carbon emissions and intensity, and thus can be manipulated to achieve carbon neutrality. This work aimed to evaluate the building carbon emissions intensity (CEI) levels of residential blocks using Rhino and Grasshopper and to quantify the relationship between the block form parameters and a building’s carbon emissions (CEs). Firstly, 48 cases were selected by stratified sampling, and they were classified by architectural typology. Secondly, the residential block morphological parameters and building carbon emissions were calculated. Thirdly, the relationship between the block form parameters and the building’s CE was quantified using statistical methods. Lastly, low-carbon planning strategies for residential blocks under the target of carbon neutrality were proposed. The findings showed that the influence of the block form parameters on a building’s CE was 31.66%. A building’s shape factor has a positive influence on its CE, and the floor area ratio, building volume–site area ratio, and building height have negative influences on its CE. A building’s shape factor, cover ratio, and surface–site area ratio synergistically impact its CE. The weight of a building’s shape factor on its carbon emissions was 3.84 times that of its cover ratio and 4.46 times that of its surface–site area ratio. The technology workflow proposed in this study can provide data in support of carbon emissions assessments and low-carbon planning strategies for urban blocks in other cities in China and worldwide.

Related Organizations
Keywords

low-carbon planning, Environmental effects of industries and plants, carbon neutral, TJ807-830, block form, TD194-195, Renewable energy sources, Environmental sciences, residential blocks, GE1-350, building carbon emissions

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Average
Top 10%
Top 10%
gold