Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2023
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Innovative Thermal Renders Incorporating Oyster Shells for Sustainable Insulation

Authors: Poliana Bellei; Fernanda Magalhães; Manuel Pereira; Isabel Torres; Runar Solstad; Inês Flores-Colen;

Innovative Thermal Renders Incorporating Oyster Shells for Sustainable Insulation

Abstract

In accordance with current sustainable development objectives, it is intended to implement innovative and sustainable solutions at economic, environmental, and functional levels, boosting the construction sector to increasingly contribute to society. Expanded cork is an alternative to sand aggregate in improving the thermal insulating properties of renders. In addition, other materials can be incorporated as aggregates in an attempt to contribute to both the improvement of the physical characteristics that the render must fulfil as well as the improvement of thermal behaviour (if possible). In this sense, bio-based materials generated by the aquaculture sector, such as oyster shells, can contribute as a bio-based insulation material for thermal renders. In this study, thermal natural hydraulic lime mortars were produced from a mixture of expanded cork (EC) insulating aggregate and oyster shells (OSs). The percentages of replacing EC by OSs were 20, 30, 40, and 50%. The tests were carried out in fresh and hardened states. The studied mortars presented a thermal conductivity and compressive strength of 0.151 W/(m·K) and 0.63 MPa, respectively. The most interesting performance between thermal conductivity and compressive strength was for the composite with 50% of each bio-based material. The potential of incorporating oyster shells as a bio-based insulation material could contribute to a sustainable blue circular economy.

Keywords

expanded cork, Environmental effects of industries and plants, TJ807-830, sustainability, TD194-195, Renewable energy sources, Environmental sciences, thermal render, GE1-350, oyster shell

Powered by OpenAIRE graph
Found an issue? Give us feedback