
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Efficiency Optimization in Multi-Branch Converters through Dynamic Control

doi: 10.3390/su152216032
As the global emphasis on solar energy intensifies, optimizing the efficiency of photovoltaic panels becomes crucial in meeting energy demands sustainably. Addressing this, our research delves deeply into advancing maximum power point tracking (MPPT), a pivotal component in perfecting the energy conversion process. Leveraging state-of-the-art mathematical modeling, in-depth simulations, and comprehensive experimental validation, we set out to markedly refine the performance of non-isolated multi-branch buck DC–DC converters. In this pursuit, we introduce an innovative algorithm meticulously designed to adjust the number of active branches. This adjustment is rooted in robust efficiency metrics, ensuring optimal power delivery even under dynamic and fluctuating conditions. We place a distinct emphasis on the transformative role of current in determining converter efficiency. Drawing from our findings, we advocate for an adaptive control strategy, precisely engineered to thrive in a spectrum of operational contexts. With this study, we not only present pivotal contributions to the domain of photovoltaic technology but also chart out clear expectations for future endeavors. Our hope is that these advancements serve as foundational steps, guiding the evolution of sustainable energy generation.
- Technical University of Košice Slovakia
- Technical University of Košice Slovakia
Environmental effects of industries and plants, MPP tracking, TJ807-830, photovoltaic panel, sustainability, TD194-195, Renewable energy sources, Environmental sciences, multi-branch converter, converter for photovoltaic, GE1-350, efficiency enhancement
Environmental effects of industries and plants, MPP tracking, TJ807-830, photovoltaic panel, sustainability, TD194-195, Renewable energy sources, Environmental sciences, multi-branch converter, converter for photovoltaic, GE1-350, efficiency enhancement
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).2 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
