Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2023
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Delving into the Digital Twin Developments and Applications in the Construction Industry: A PRISMA Approach

Authors: Muhammad Afzal; Rita Yi Man Li; Muhammad Shoaib; Muhammad Faisal Ayyub; Lavinia Chiara Tagliabue; Muhammad Bilal; Habiba Ghafoor; +1 Authors

Delving into the Digital Twin Developments and Applications in the Construction Industry: A PRISMA Approach

Abstract

Construction 4.0 is witnessing exponential growth in digital twin (DT) technology developments and applications, revolutionizing the adoption of building information modelling (BIM) and other emerging technologies used throughout the built environment lifecycle. BIM provides technologies, procedures, and data schemas representing building components and systems. At the same time, the DT enhances this with real-time data for integrating cyber-physical systems, enabling live asset monitoring and better decision making. Despite being in the early stages of development, DT applications have rapidly progressed in the AEC sector, resulting in a diverse literature landscape due to the various technologies and parameters involved in fully developing the DT technology. The intricate complexities inherent in digital twin advancements have confused professionals and researchers. This confusion arises from the nuanced distinctions between the two technologies, i.e., BIM and DT, causing a convergence that hinders realizing their potential. To address this confusion and lead to a swift development of DT technology, this study provides a holistic review of the existing research focusing on the critical components responsible for developing the applications of DT technology in the construction industry. It highlights five crucial elements: technologies, maturity levels, data layers, enablers, and functionalities. Additionally, it identifies research gaps and proposes future avenues for streamlined DT developments and applications in the AEC sector. Future researchers and practitioners can target data integrity, integration and transmission, bi-directional interoperability, non-technical factors, and data security to achieve mature digital twin applications for AEC practices. This study highlights the growing significance of DTs in construction and provides a foundation for further advancements in this field to harness its potential to transform built environment practices. It also pinpoints the latest developments in AI, namely the large language model (LLM) and retrieval-augmented generation (RAG)’s implications for DT education, policies, and the construction industry’s practices.

Keywords

bi-directional interoperability, Environmental effects of industries and plants, TJ807-830, TD194-195, Renewable energy sources, Environmental sciences, generative AI, digital twin, construction 4.0, digital transformation, GE1-350, building information modelling

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
gold