Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2023
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Operational Scheduling of Household Appliances by Using Triple-Objective Optimization Algorithm Integrated with Multi-Criteria Decision Making

Authors: Dhiaa Halboot Muhsen; Haider Tarish Haider; Yaarob Al-Nidawi; Ghadeer Ghazi Shayea;

Operational Scheduling of Household Appliances by Using Triple-Objective Optimization Algorithm Integrated with Multi-Criteria Decision Making

Abstract

Load scheduling is a key factor in demand side management (DSM), which manages available generation capacity with regard to the required demand. In this paper, a triple-objective load scheduling optimization problem (LSOP) is formulated for achieving optimal cost and peak demand as well as minimum customer inconvenience. A Henry gas solubility optimization (HGSO) algorithm that is based on multi-objective is used for solving LSOP. The proposed HGSO offers a set of compromise solutions that represent the tradeoff between the three objectives of the formulated problem. A set of all compromise solutions from the dominant Pareto front is achieved first, and then ranked by using MCDM so as to optimally sort these solutions. An entropy weighting method (EWM) is then used for computing the weights of various criteria that dominate the LSOP and is provided as a technique for ordering preferences by similarity to achieve the ideal solution (TOPSIS) so as to rank the sorted solutions. Two types of end-users are considered so as to show the effectiveness of the proposed LSOP: non-cooperative and cooperative users. The results of the proposed load scheduling method show the significance of the proposed method for both the cooperative and non-cooperative end-users. The proposed method achieves a cost of energy of R50.62 as a total cost of energy consumed by four non-cooperative end-users. The cost of energy for the cooperative end-users is found to be R47.39. Thus, saving in the energy cost unit is found to be around 5.5% by using the proposed method; moreover, the peak demand value is reduced by 9.7% when non-cooperative end-users becomes cooperative.

Keywords

Environmental effects of industries and plants, TJ807-830, TD194-195, Renewable energy sources, Environmental sciences, multi-objective optimization, demand response, load management, HGSO, GE1-350, entropy weighting method, smart grid

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
gold