
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Effects of Replacing Fishmeal with Algal Biomass (Pavlova sp. 459) on Membrane Lipid Composition of Atlantic Salmon (Salmo salar) Parr Muscle and Liver Tissues

doi: 10.3390/su152416599
A 12-week feeding trial examined the dietary impact of replacing fishmeal (FM) with algal biomass (AB) derived from Pavlova sp. strain CCMP459 (Pav459) in Atlantic salmon diets. Three distinct diets were formulated: a control diet featuring 20% FM and 7% fish oil (FO), an experimental diet incorporating a 50:50 blend of FM and AB Pav459 and reduced FO (10% FM; 4.5% FO; 10% AB), and a second experimental diet with full replacement of FM with AB Pav459 and further reduction in FO (1.75% FO; 20% AB). Replacing FM with AB Pav459 showed no significant effects on the growth performance of Atlantic salmon. Fish across all diets exhibited growth exceeding 200% from their initial weight. Analysis of total lipid content after the 12-week trial revealed no significant differences among the diets. However, individual proportions of omega-3 (ω3) and omega-6 (ω6) fatty acids varied. Fatty acid profiling in muscle and liver tissues showed distinct compositions reflective of dietary treatments. Linoleic acid (LA) and α-linolenic acid (ALA) exhibited higher proportions in total fatty acids than in membrane lipids. Docosahexaenoic acid (DHA) emerged as the predominant fatty acid in the membranes of both liver and muscle tissues. Furthermore, an analysis of sterol composition in Pavlova and salmon muscle tissue showed the presence of important sterols, including conventionally animal-associated cholesterol. This emphasizes the suitability of microorganisms, such as Pav459, for synthesizing diverse nutrients. Stable isotope analysis demonstrated direct incorporation of eicosapentaenoic acid (EPA) and DHA from diets into salmon tissues. Notably, minimal biosynthesis from the precursor ALA was observed, reaffirming the utility of Pav459-derived fatty acids. The EPA+DHA proportions in the fillet consistently met daily human consumption requirements across all dietary conditions, supporting the use of Pav459 algal biomass as an alternative to FM.
- Memorial University of Newfoundland Canada
- Dalhousie University Canada
- National Research Council Canada Canada
- Dalhousie University Canada
- National Research Council Canada Canada
DHA, Environmental sciences, Atlantic salmon, Environmental effects of industries and plants, fishmeal, TJ807-830, <i>Pavlova</i> sp. 459, EPA, GE1-350, algal biomass, TD194-195, Renewable energy sources
DHA, Environmental sciences, Atlantic salmon, Environmental effects of industries and plants, fishmeal, TJ807-830, <i>Pavlova</i> sp. 459, EPA, GE1-350, algal biomass, TD194-195, Renewable energy sources
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).2 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
