Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2023
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effects of Replacing Fishmeal with Algal Biomass (Pavlova sp. 459) on Membrane Lipid Composition of Atlantic Salmon (Salmo salar) Parr Muscle and Liver Tissues

Authors: Nigel Guerra; Christopher C. Parrish; Minmin Wei; Judy Perry; Jorge A. Del Ángel-Rodríguez; Sean M. Tibbetts; Mohamed Emam; +1 Authors

Effects of Replacing Fishmeal with Algal Biomass (Pavlova sp. 459) on Membrane Lipid Composition of Atlantic Salmon (Salmo salar) Parr Muscle and Liver Tissues

Abstract

A 12-week feeding trial examined the dietary impact of replacing fishmeal (FM) with algal biomass (AB) derived from Pavlova sp. strain CCMP459 (Pav459) in Atlantic salmon diets. Three distinct diets were formulated: a control diet featuring 20% FM and 7% fish oil (FO), an experimental diet incorporating a 50:50 blend of FM and AB Pav459 and reduced FO (10% FM; 4.5% FO; 10% AB), and a second experimental diet with full replacement of FM with AB Pav459 and further reduction in FO (1.75% FO; 20% AB). Replacing FM with AB Pav459 showed no significant effects on the growth performance of Atlantic salmon. Fish across all diets exhibited growth exceeding 200% from their initial weight. Analysis of total lipid content after the 12-week trial revealed no significant differences among the diets. However, individual proportions of omega-3 (ω3) and omega-6 (ω6) fatty acids varied. Fatty acid profiling in muscle and liver tissues showed distinct compositions reflective of dietary treatments. Linoleic acid (LA) and α-linolenic acid (ALA) exhibited higher proportions in total fatty acids than in membrane lipids. Docosahexaenoic acid (DHA) emerged as the predominant fatty acid in the membranes of both liver and muscle tissues. Furthermore, an analysis of sterol composition in Pavlova and salmon muscle tissue showed the presence of important sterols, including conventionally animal-associated cholesterol. This emphasizes the suitability of microorganisms, such as Pav459, for synthesizing diverse nutrients. Stable isotope analysis demonstrated direct incorporation of eicosapentaenoic acid (EPA) and DHA from diets into salmon tissues. Notably, minimal biosynthesis from the precursor ALA was observed, reaffirming the utility of Pav459-derived fatty acids. The EPA+DHA proportions in the fillet consistently met daily human consumption requirements across all dietary conditions, supporting the use of Pav459 algal biomass as an alternative to FM.

Keywords

DHA, Environmental sciences, Atlantic salmon, Environmental effects of industries and plants, fishmeal, TJ807-830, <i>Pavlova</i> sp. 459, EPA, GE1-350, algal biomass, TD194-195, Renewable energy sources

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
gold
Related to Research communities
Energy Research