Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2023
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Innovative Imaging and Analysis Techniques for Quantifying Spalling Repair Materials in Concrete Pavements

Authors: Junhwi Cho; Julian Kang; Yooseob Song; Seungjoo Lee; Jaeheum Yeon;

Innovative Imaging and Analysis Techniques for Quantifying Spalling Repair Materials in Concrete Pavements

Abstract

Traditional spalling repair on concrete pavement roads is labor-intensive. It involves traffic blockages and the manual calculation of repair areas, leading to time-consuming processes with potential discrepancies. This study used a line scan camera to photograph road surface conditions to analyze spalling without causing traffic blockage in an indoor setting. By using deep learning algorithms, specifically a region-based convolutional neural network (R-CNN) in the form of the Mask R-CNN algorithm, the system detects spalling and calculates its area. The program processes data based on the Federal Highway Administration (FHWA) spalling repair standards. Accuracy was assessed using root mean square error (RMSE) and Pearson correlation coefficient (PCC) via comparisons with actual field calculations. The RMSE values were 0.0137 and 0.0167 for the minimum and maximum repair areas, respectively, showing high accuracy. The PCC values were 0.987 and 0.992, indicating a strong correlation between the actual and calculated repair areas, confirming the high calculation accuracy of the method.

Keywords

line scan camera, Environmental effects of industries and plants, repair area, TJ807-830, amount of repair material, Mask R-CNN, TD194-195, Renewable energy sources, Environmental sciences, concrete pavement, GE1-350, spalling

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold