Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2023
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mechanical and Environmental Performance of Asphalt Concrete with High Amounts of Recycled Concrete Aggregates (RCA) for Use in Surface Courses of Pavements

Authors: Fernando C. G. Martinho; Hugo M. R. D. Silva; Joel R. M. Oliveira; Caroline F. N. Moura; Carlos D. A. Loureiro; José D. Silvestre; Mafalda M. M. Rodrigues;

Mechanical and Environmental Performance of Asphalt Concrete with High Amounts of Recycled Concrete Aggregates (RCA) for Use in Surface Courses of Pavements

Abstract

Using aggregates from alternative sources has been considerably encouraged in recent decades. Reducing the consumption of natural aggregates from quarries (which have a substantial economic, visual, and environmental impact) is increasingly a concern. These needs have led to the broader use of more sustainable aggregates, increasing the incorporation percentages and extending their use to more demanding pavement layers (e.g., surface). In order to prove the efficiency of recycled concrete aggregates (RCAs) under such conditions, the “CirMat” project was developed. Among other works and tests, an asphalt concrete (AC) incorporating 52.3% RCA was characterized mechanically and environmentally. Empirical properties were evaluated, including the Marshall test (S = 20.2 kN; F = 2.9 mm) and resistance to permanent deformation (WTS = 0.10 mm/103 cycles), as well as a life cycle assessment (LCA), which confirmed that nine indicators were improved (from 1% to 93%). The test samples were taken from mixtures produced in the laboratory and at a plant (after which they were applied on a construction site). Comparing the results with those obtained in a reference AC (with natural aggregates), it was possible to conclude that the performance of the AC with RCAs was very similar. Therefore, the use of these aggregates, at high rates, does not represent additional risks for asphalt mixtures and has lower environmental impacts in most categories.

Country
Portugal
Keywords

Water sensitivity, Environmental effects of industries and plants, Environmental product declaration, TJ807-830, Marshall test, TD194-195, environmental product declaration, Renewable energy sources, Environmental sciences, Life cycle assessment, Permanent deformation resistance, life cycle assessment, recycled concrete aggregate, Recycled concrete aggregate, Asphalt concrete, permanent deformation resistance, GE1-350, asphalt concrete

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 13
    download downloads 1
  • 13
    views
    1
    downloads
    Data sourceViewsDownloads
    Universidade do Minho: RepositoriUM131
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
7
Average
Average
Top 10%
13
1
Green
gold