
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Pathway to Sustainability: An Overview of Renewable Energy Integration in Building Systems

doi: 10.3390/su16020638
Decarbonizing the building sector is crucial for mitigating climate change, reducing carbon emissions, and achieving an energy production–consumption balance. This research aims to identify key design principles and strategies to enhance energy savings and analyze the integration potential of renewable energy sources (RES) such as solar, wind, geothermal, and biomass, providing in-depth technical exploration and evaluating current building developments. Moreover, the study also examines recent developments, explicitly focusing on integrating hybrid renewable energy systems, energy storage solutions, and AI-based technological innovations. Through comprehensive analysis and critical evaluation, this research provides valuable insights and practical recommendations for achieving building sustainability and advancing the transition towards a low-carbon built environment.
Environmental effects of industries and plants, energy storage, hybrid renewable energy systems, TJ807-830, TD194-195, Renewable energy sources, Environmental sciences, geothermal integration, biomass integration, GE1-350, wind integration, solar integration
Environmental effects of industries and plants, energy storage, hybrid renewable energy systems, TJ807-830, TD194-195, Renewable energy sources, Environmental sciences, geothermal integration, biomass integration, GE1-350, wind integration, solar integration
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).26 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
