Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Efficiency of a Biological Reactor in a Domestic Wastewater Treatment Plant Operating Based on ABS (Acrylonitrile Butadiene Styrene) Material and Recycled PUR (Polyurethane) Foam

Authors: Krzysztof Chmielowski; Wiktor Halecki; Adam Masłoń; Łukasz Bąk; Marek Kalenik; Marcin Spychała; Dawid Bedla; +4 Authors

The Efficiency of a Biological Reactor in a Domestic Wastewater Treatment Plant Operating Based on ABS (Acrylonitrile Butadiene Styrene) Material and Recycled PUR (Polyurethane) Foam

Abstract

The primary objective of this research was to assess the efficacy of a novel solution under conditions closely resembling those of real-world scenarios. Biological beds, or filters, hold significant potential for widespread implementation in individual households, particularly in areas with dispersed housing. The system’s aim was to improve the quality of wastewater treated in on-site domestic biological treatment plants. A pivotal aspect of the project involved developing a prototype research installation for conducting comprehensive testing. Our installation system consisted of several components designed to create a laboratory-scale model for domestic wastewater treatment. The model comprised four biological reactors filled with ABS material and secured by a PUR frame. Additionally, the tested model included a controller for wastewater dosing control, a septic tank as a reservoir, and four tanks for collecting purified wastewater. Through regression analysis using the Generalized Linear Model (GLM), a correlation between CODCr and TSS was revealed. This study presents the research findings concerning the development of a prototype installation that incorporates an advanced reactor or filter. The data derived from this research have the potential to contribute to the creation of products that enhance the performance and efficiency of household wastewater treatment systems.

Keywords

Environmental effects of industries and plants, prototype filter, TJ807-830, wastewater treatment efficiency, on-site domestic treatment, TD194-195, reuse e-waste, Renewable energy sources, Environmental sciences, GE1-350

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
gold