Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Coordinated Effects of CO2 and Air Pollutant Emission Changes Induced by Inter-Provincial Trade in China

Authors: Peng Qi; Jianlei Lang; Xiaoqi Wang; Ying Zhou; Haoyun Qi; Shuiyuan Cheng;

The Coordinated Effects of CO2 and Air Pollutant Emission Changes Induced by Inter-Provincial Trade in China

Abstract

Inter-provincial trade leads to changes in CO2 and air pollutant emissions. However, there is a research gap regarding the coordinated effects (co-effects) between embodied CO2 and air pollutant emissions in trade. Understanding co-effects in inter-provincial trade is a prerequisite for driving the green transformation of trade and achieving coordination between pollution and carbon reduction. Here, we calculated provincial-level CO2 and air pollutant emission leakage in 2012 and 2017 based on a modified input–output model and, for the first time, investigated the co-effects between CO2 and air pollutant emission leakage caused by emissions transfers in China. Three types of co-effects, categorized as co-benefits, trade-offs, and co-damage, were discovered and defined to reveal the provincial differences. Furthermore, combined with structural decomposition analysis (SDA), we calculated the interannual variation in trade-induced emissions and identified the key driving factors of provincial-level co-effects from 2012 to 2017. Optimizing the energy structure has led to the greatest co-benefits, while changes in the industrial structure and emission coefficients have led to limited co-benefits in specific provinces. Variations in trade volume have led to co-damages across all provinces, and changes in emission coefficients have led to trade-offs in the majority of provinces. The case analysis confirmed that identifying and adjusting the key driving factors of co-effects can promote the transformation from co-damage and trade-offs to co-benefits. The findings implied a new approach for the reduction in pollution and carbon through inter-provincial trade.

Related Organizations
Keywords

multi-regional input–output model, CO<sub>2</sub>, Environmental sciences, inter-provincial trade, coordinated effects, Environmental effects of industries and plants, TJ807-830, air pollutants, GE1-350, TD194-195, Renewable energy sources

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
gold
Related to Research communities
Energy Research