
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Economic Appraisal and Enhanced Efficiency Optimization for Liquid Methanol Production Process

doi: 10.3390/su16051993
The presented study examines the economic viability and optimization of a previously designed integrated process for producing liquid methanol. The annualized cost of the system method is applied for economic analysis. The optimization method includes a robust hybrid approach that combines the NSGA-II multi-objective optimization algorithm with artificial intelligence. Decision variables for the optimization are taken from a sensitivity analysis to optimize the exergy and energy efficiencies and the investment return period. Decision-making methodologies, including LINMAP, fuzzy, and TOPSIS, are utilized to identify the optimal outcomes, effectively identifying points along the Pareto-optimal front. Compared with the original design, the research outcomes demonstrate an over 38% reduction in the process’s investment return period post optimization, as evaluated through the TOPSIS and LINMAP methodologies. Additionally, the highest level of thermal efficiency achieved through optimization stands at 79.9%, assessed using the LINMAP and TOPSIS methods, and 79.2% using the fuzzy Bellman–Zadeh method. The process optimization in the presented research, coupled with the improved economic feasibility, mitigates energy consumption through maximizing efficiency, thereby fostering sustainable and environmentally friendly development.
methanol production, Environmental effects of industries and plants, TJ807-830, TD194-195, Renewable energy sources, economic analysis, Environmental sciences, multi-objective optimization, sensitivity analysis, GE1-350
methanol production, Environmental effects of industries and plants, TJ807-830, TD194-195, Renewable energy sources, economic analysis, Environmental sciences, multi-objective optimization, sensitivity analysis, GE1-350
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).1 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
