Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Analysis of Pollutants for the Sustainable Reuse of Waste Lubricant Oils

Authors: Rosa Vitiello; Francesco Taddeo; Riccardo Tesser; Gabriella Di Natale; Marco Trifuoggi; Mariano Baldoni; Martino Di Serio;

Analysis of Pollutants for the Sustainable Reuse of Waste Lubricant Oils

Abstract

Nowadays, attention to the environment is increasingly emphasized by the scientific community. Different measures have been adopted to ensure a lower environmental impact and increase the sustainability of industrial processes. This work fits well with these principles, as it focuses on the determination of pollutants in waste lubricating oils derived from the industrial and automotive sectors to quantify their concentration for potential recovery and subsequent reuse. Modern waste oils, especially those derived from industrial processes, contain pollutants and metals (most importantly, silicon). It is of utmost importance to determine the silicon content in the collected waste oils to verify the possibility of recycling them since high concentrations can badly affect the industrial operations in which they can be involved. One of the most applied analytic methods for controlling the content of metals is the ASTM D5185-18, Standard Test Method for Multielement Determination of Used and Unused Lubricating Oils and Base Oils by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES). However, this method was certified for 50 mg/kg of maximum silicon content. To extend this range, CONOU, because of its duty to monitor waste oil quality, organized an interlaboratory comparison to verify the applicability of ASTM D5185-18 and also to samples of used oils containing higher concentrations of silicon. This work describes the details of the employed methodology and the results of the interlaboratory comparison that showed the applicability of ASTM D5185-18 also to samples containing silicon concentrations higher than 1000 ppm.

Country
Italy
Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold