Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Repositório Cientifi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IPVC Repository
Article . 2024
Data sources: IPVC Repository
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Comparative Study of Pretreatments on Coconut Fiber for Efficient Isolation of Lignocellulosic Fractions

Authors: Fabrícia Vieira; Hortência E. P. Santana; Meirielly Jesus; Fernando Mata; Preciosa Pires; Manuela Vaz-Velho; Daniel Pereira Silva; +1 Authors

Comparative Study of Pretreatments on Coconut Fiber for Efficient Isolation of Lignocellulosic Fractions

Abstract

Pretreatment is an essential step for breaking the recalcitrant structure of lignocellulosic biomass and allowing conversion to high-value-added chemicals. In this study, coconut fiber was subjected to three pretreatment methods to compare their impacts on the biomass’s structural characteristics and their efficiency in fractionating the biomass. This comparative approach was conducted to identify mild biomass pretreatment conditions that efficiently extract lignin and recover cellulose-rich pulp for the production of bioproducts. To this end, autohydrolysis, alkaline, and organosolv pretreatments were performed under different experimental conditions, and the physicochemical properties of the samples were evaluated using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), and chemical characterization of the cellulose, hemicellulose, and lignin fractions. Therefore, efficient experimental conditions were identified to pretreat coconut fibers with an extended understanding of the methods to process lignocellulose. Great delignification efficiency and pulp yield were obtained with organosolv > alkaline extraction > autohydrolysis under the selected conditions of 2 h at 185 °C in the presence of a catalyst, namely, 0.5 M NaOH, for 2 h at 55 °C and 20 min at 195 °C, respectively. FT-IR revealed a predominance of hydroxyl groups in fibers obtained from alkaline and organosolv pretreatment, showing higher lignin degradation and cellulose concentration in these samples. TGA revealed mass loss curves with similar behaviors but different patterns and intensities, and MVE analysis showed differences on the surfaces of each sample. The comparison of experimental parameters allowed the identification of suitable conditions for each extraction method, and structural analyses identified the specific characteristics of the fibers that could be obtained according to the method used. Therefore, the results are of great importance for developing sustainable and effective industrial processes.

Country
Portugal
Keywords

570, Coconut, 600, Cellulosic pulp, Lignin, Autohydrolysis, Organosolv, Alkaline removal

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Green
gold