Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Deep Low-Carbon Economic Optimization Using CCUS and Two-Stage P2G with Multiple Hydrogen Utilizations for an Integrated Energy System with a High Penetration Level of Renewables

Authors: Junqiu Fan; Jing Zhang; Long Yuan; Rujing Yan; Yu He; Weixing Zhao; Nang Nin;

Deep Low-Carbon Economic Optimization Using CCUS and Two-Stage P2G with Multiple Hydrogen Utilizations for an Integrated Energy System with a High Penetration Level of Renewables

Abstract

Integrating carbon capture and storage (CCS) technology into an integrated energy system (IES) can reduce its carbon emissions and enhance its low-carbon performance. However, the full CCS of flue gas displays a strong coupling between lean and rich liquor as carbon dioxide liquid absorbents. Its integration into IESs with a high penetration level of renewables results in insufficient flexibility and renewable curtailment. In addition, integrating split-flow CCS of flue gas facilitates a short capture time, giving priority to renewable energy. To address these limitations, this paper develops a carbon capture, utilization, and storage (CCUS) method, into which storage tanks for lean and rich liquor and a two-stage power-to-gas (P2G) system with multiple utilizations of hydrogen including a fuel cell and a hydrogen-blended CHP unit are introduced. The CCUS is integrated into an IES to build an electricity–heat–hydrogen–gas IES. Accordingly, a deep low-carbon economic optimization strategy for this IES, which considers stepwise carbon trading, coal consumption, renewable curtailment penalties, and gas purchasing costs, is proposed. The effects of CCUS, the two-stage P2G system, and stepwise carbon trading on the performance of this IES are analyzed through a case-comparative analysis. The results show that the proposed method allows for a significant reduction in both carbon emissions and total operational costs. It outperforms the IES without CCUS with an 8.8% cost reduction and a 70.11% reduction in carbon emissions. Compared to the IES integrating full CCS, the proposed method yields reductions of 6.5% in costs and 24.7% in emissions. Furthermore, the addition of a two-stage P2G system with multiple utilizations of hydrogen further amplifies these benefits, cutting costs by 13.97% and emissions by 12.32%. In addition, integrating CCUS into IESs enables the full consumption of renewables and expands hydrogen utilization, and the renewable consumption proportion in IESs can reach 69.23%.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
gold