
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Thermal Energy Storage in Energy Communities: A Perspective Overview through a Bibliometric Analysis

doi: 10.3390/su16145895
handle: 11391/1577834
The climate and energy crisis requires immediate countermeasures. Renewable energy communities (RECs) are capable of enhancing the consumption of renewable energy, involving citizens with a leading role in the energy transition process. The main objective of a REC is to maximize the consumption of renewable energy by reducing the mismatch between energy supply and demand. This is possible through the use of strategies and technologies including energy storage systems. Among these, the use of thermal energy storage (TES) is an efficient strategy due to the lower investment required compared to other storage technologies, like electric batteries. This study aims to define the role of TES in RECs, through a bibliometric analysis, in order to highlight research trends and possible gaps. This study shows that the existing literature on TES does not present terms related to RECs, thus presenting a research gap. On the other hand, RESs address the topic of energy storage in the literature, without focusing on TES in particular but considering the general aspect of the topic. Therefore, this leaves open a possibility for the development of research on TES as a possible technology applied to a REC to maximize the renewable energy sharing.
- University of Perugia Italy
- University of Lleida Spain
- University of Lleida Spain
Bibliometric analysis, Renewable energy community, Thermal energy storage (TES), renewable energy community, thermal energy storage (TES), bibliometric analysis
Bibliometric analysis, Renewable energy community, Thermal energy storage (TES), renewable energy community, thermal energy storage (TES), bibliometric analysis
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).4 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
