Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Solar Irradiance Database Comparison for PV System Design: A Case Study

Authors: Jamal AlFaraj; Emanuel Popovici; Paul Leahy;

Solar Irradiance Database Comparison for PV System Design: A Case Study

Abstract

Effective design of solar photovoltaic (PV) systems requires accurate meteorological data for solar irradiance, ambient temperature, and wind speed. In this study, we aim to assess the reliability of satellite-based solar resource databases such as NASA, Solcast, and PVGIS by comparing them with ground-based measurements of global horizontal irradiance (GHI) from six locations in the Republic of Ireland. We compared satellite- and ground-based GHI data recorded between 2011 and 2012 and used Python-based packages to simulate solar power output for the six locations using both data types. The simulated outputs were then compared against metered power output from PV arrays at the sites. Ground-based GHI measurements demonstrate superior accuracy due to their acquisition at specific locations, offering increased spatial representativity. On the other hand, satellite GHI measurements, although reasonably accurate for many applications, cover broader regions with lower spatial resolution, leading to averaging effects that may not fully capture localized variations. This difference is reflected in the mean absolute percentage error (MAPE) values, with ground-simulated data showing low MAPE values, indicating strong alignment with reference observations, while satellite-simulated data exhibit a slightly higher MAPE, suggesting less precise estimates despite a strong correlation with ground-based measurements. This study demonstrates the relative reliability of satellite- and ground-based GHI data for accurate solar PV system design, emphasizing the practical implications for energy planners and engineers, and providing a strong enhancement for researchers working on forecasting solar energy yields using satellite databases. The Python-based PVLib package was utilized for the simulation, offering a robust framework for modeling and analyzing solar power systems, and its effectiveness in this context is discussed in detail.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold