Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Thermochemical Conversion of Biomass into Biochar: Enhancing Adsorption Kinetics and Pore Properties for Environmental Sustainability

Authors: Tasi-Jung Jiang; Hervan Marion Morgan; Wen-Tien Tsai; Herlin Chien; Tsair-Bor Yen; Yu-Ru Lee;

Thermochemical Conversion of Biomass into Biochar: Enhancing Adsorption Kinetics and Pore Properties for Environmental Sustainability

Abstract

This study investigates the pyrolysis and adsorption properties of biochar derived from coconut shell (BC-CS), rice husk (BC-RH), and cow manure (BC-CM) under varying thermal treatment conditions. Biochar samples were produced at 800 °C with residence times ranging from 0 to 60 min. Their characteristics were analyzed using their Brunauer–Emmett–Teller (BET) surface area, total pore volume, and pore diameter measurements. BC-CM exhibited the highest BET surface area of 263.3 m2/g and a total pore volume of 0.164 cm3/g, while BC-RH and BC-CS showed maximum BET surface areas of 220.62 m2/g and 197.38 m2/g, respectively. Nitrogen adsorption–desorption isotherms revealed distinct microporous and mesoporous structures, with BC-CM demonstrating superior adsorption capacity across all relative pressures. The adsorption kinetics of methylene blue (MB) were examined at initial concentrations of 1 ppm, 5 ppm, and 10 ppm, with varying biochar doses (0.1 g, 0.3 g, and 0.5 g). The results showed that the adsorption rate constant (k) decreased with higher initial MB concentrations, while the equilibrium adsorption capacity (qe) increased. BC-CM achieved the highest qe of 2.18 mg/g at 10 ppm and a 0.5 g dose, followed by BC-RH-800-45 (1.145 mg/g) and BC-CS (0.340 mg/g). The adsorption process was well described by a pseudo-second-order kinetic model, indicating chemisorption as the dominant mechanism. Increasing biochar doses improved MB removal efficiency, highlighting the dose-dependent nature of adsorption. These findings underscore the importance of optimizing pyrolysis parameters to enhance biochar’s adsorption performance and identify key factors influencing its effectiveness in environmental applications.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
gold