Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Optimal Electric Vehicle Battery Management Using Q-learning for Sustainability

Authors: Pannee Suanpang; Pitchaya Jamjuntr;

Optimal Electric Vehicle Battery Management Using Q-learning for Sustainability

Abstract

This paper presents a comprehensive study on the optimization of electric vehicle (EV) battery management using Q-learning, a powerful reinforcement learning technique. As the demand for electric vehicles continues to grow, there is an increasing need for efficient battery-management strategies to extend battery life, enhance performance, and minimize operating costs. The primary objective of this research is to develop and assess a Q-learning-based approach to address the intricate challenges associated with EV battery management. This paper starts by elucidating the key challenges inherent in EV battery management and discusses the potential advantages of incorporating Q-learning into the optimization process. Leveraging Q-learning’s capacity to make dynamic decisions based on past experiences, we introduce a framework that considers state-of-charge, state-of-health, charging infrastructure, and driving patterns as critical state variables. The methodology is detailed, encompassing the selection of state, action, reward, and policy, with the training process informed by real-world data. Our experimental results underscore the efficacy of the Q-learning approach in optimizing battery management. Through the utilization of Q-learning, we achieve substantial enhancements in battery performance, energy efficiency, and overall EV sustainability. A comparative analysis with traditional battery-management strategies is presented to highlight the superior performance of our approach. A comparative analysis with traditional battery-management strategies is presented to highlight the superior performance of our approach, demonstrating compelling results. Our Q-learning-based method achieves a significant 15% improvement in energy efficiency compared to conventional methods, translating into substantial savings in operational costs and reduced environmental impact. Moreover, we observe a remarkable 20% increase in battery lifespan, showcasing the effectiveness of our approach in enhancing long-term sustainability and user satisfaction. This paper significantly enriches the body of knowledge on EV battery management by introducing an innovative, data-driven approach. It provides a comprehensive comparative analysis and applies novel methodologies for practical implementation. The implications of this research extend beyond the academic sphere to practical applications, fostering the broader adoption of electric vehicles and contributing to a reduction in environmental impact while enhancing user satisfaction.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
gold