Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2024
License: CC BY
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Database „Lituanistika“
Article . 2024
License: CC BY
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Economic Attractiveness of the Flexible Combined Biofuel Technology in the District Heating System

Authors: Arvydas Galinis; Esa Kurkela; Minna Kurkela; Felix Habermeyer; Vidas Lekavičius; Nerijus Striūgas; Raminta Skvorčinskienė; +2 Authors

Economic Attractiveness of the Flexible Combined Biofuel Technology in the District Heating System

Abstract

European Union (EU) energy markets are changing rapidly. After the recent turmoil, a new wave of EU legislation is once again reshaping the way energy should be used in the EU, emphasizing not only the increasing importance of using renewable and local energy sources but also highlighting the importance of energy efficiency and decarbonization of high to abate sectors (including aviation and marine fuels). Heating and cooling account for about half of the total gross final energy consumption in the EU. This article explores the novel concept of using waste heat from the flexible Fischer–Tropsch (FT) process (FLEXCHX) in the existing district heating network, resulting in tri-generation: FT C5+ liquids, heat, and electricity. FLEXCHX provides operation flexibility and combines advanced biomass gasification, catalytic liquefaction, electrolysis, and waste heat recovery, allowing use of biomass residues in a more sustainable way. Our results, based on the Kaunas district heating (DH) system, show that this process could be integrated into the existing district heating network in Northern Europe and successfully compete with existing heat-only boilers and CHPs using biomass or municipal waste, resulting in more efficient use of biomass and savings accumulated up to EUR 200 million over the study period in the analysis (2020–2050), supplying up to 30% of the heat in the Kaunas DH system. Enriching the FT process with hydrogen (using electrolysis) could result in additional FLEXCHX utilization benefits by creating demand for cheap excess electricity that might otherwise be curtailed.

Country
Germany
Keywords

biomass gasification, waste heat utilisation, Fischer–Tropsch liquids, district heating network, waste heat, Kaunas. Kauno kraštas (Kaunas region), SDG 11 - Sustainable Cities and Communities, Valstybės finansai. Biudžetas / Public finance. Budget, Lietuva (Lithuania), flexible Fischer–Tropsch (FT) process (FLEXCHX), Nacionalinė sąskaityba. Pajamos / National accounts. Income, Ekonominė analizė. Prognozavimas / Economic analysis. Forecasting, SDG 7 - Affordable and Clean Energy, SDG 14 - Life Below Water, optimization, district heating

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
gold
Funded by
Related to Research communities
Energy Research