Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
VBN
Article . 2024
Data sources: VBN
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An Optimization Strategy for EV-Integrated Microgrids Considering Peer-to-Peer Transactions

Authors: Sen Tian; Qian Xiao; Tianxiang Li; Yu Jin; Yunfei Mu; Hongjie Jia; Wenhua Li; +2 Authors

An Optimization Strategy for EV-Integrated Microgrids Considering Peer-to-Peer Transactions

Abstract

The scale of electric vehicles (EVs) in microgrids is growing prominently. However, the stochasticity of EV charging behavior poses formidable obstacles to exploring their dispatch potential. To solve this issue, an optimization strategy for EV-integrated microgrids considering peer-to-peer (P2P) transactions has been proposed in this paper. This research strategy contributes to the sustainable development of microgrids under large-scale EV integration. Firstly, a novel cooperative operation framework considering P2P transactions is established, in which the impact factors of EV charging are regarded to simulate its stochasticity and the energy trading process of the EV-integrated microgrid participating in P2P transactions is defined. Secondly, cost models for the EV-integrated microgrid are established. Thirdly, a three-stage optimization strategy is proposed to simplify the solving process. It transforms the scheduling problem into three solvable subproblems and restructures them with Lagrangian relaxation. Finally, case studies demonstrate that the proposed strategy optimizes EV load distribution, reduces the overall operational cost of the EV-integrated microgrid, and enhances the economic efficiency of each microgrid participating in P2P transactions.

Countries
Denmark, Spain
Keywords

Renewable energy, Demand response, cooperative operation, Peer-to-peer transactions, Cooperative operation, Time-sharing tariff, peer-to-peer transactions, multi agent, dispatch optimization, Dispatch optimization, renewable energy, Lagrange relaxation, energy interaction, demand response, Energy interaction, time-sharing tariff, Àrees temàtiques de la UPC::Enginyeria electrònica, Multi agent, EV-integrated microgrid

Powered by OpenAIRE graph
Found an issue? Give us feedback
Related to Research communities
Energy Research