Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Growing Kratky Basil in Trombe Wall Cavity: Year-Round Overview of Thermal Effects

Authors: Iryna Borys Bohoshevych; Hiroatsu Fukuda;

Growing Kratky Basil in Trombe Wall Cavity: Year-Round Overview of Thermal Effects

Abstract

This experimental study explores the possibility of using an existing Trombe wall as a space for year-round cultivation to increase building resource efficiency. To do so with the least cost to the building, a small 0.75 m2/5.45 m3 Trombe wall cavity space was retrofitted with shelves placed behind the glazing, additional ventilation, and a watering network to be able to grow 400 hydroponic Kratky basil plants in individual glass jars. Historical thermal observations made at the site over a year-long timespan were contrasted with the experimental readings. When fully equipped, the Trombe wall’s thermal mass increased by 51%, which had a balancing effect on the system, lowering the average daily thermal oscillations from 35.41 °C to 17.88 °C. The living plants and water have also had significant cooling (26.99 °C to 22.91 °C) and humidifying (39.88 to 47.74%) effects. The system’s energy efficiency, however, decreased from 26 to 18% (absorption) and from 85 to 46 (dissipation), lowering its energy contribution to the building by about 30%. The average plant’s lifespan within the Trombe wall was 46 days, with 15% of the specimens surpassing the 100-day mark. Over the course of a year, 20.55 kg of edible greens were grown in the Trombe wall. The experiment has shown that it is possible to grow the plants inside the Trombe wall cavity during the warmer half of the year, revealing many possible ways to improve the space’s comfort, yields, and energy efficiency.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold