
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Accounting for the Ecological Footprint of Materials in Consumer Goods at the Urban Scale

handle: 2429/69507
Ecological footprint analysis (EFA) can be used by cities to account for their on-going demands on global renewable resources. To date, EFA has not been fully implemented as an urban policy and planning tool in part due to limitations of local data availability. In this paper we focus on the material consumption component of the urban ecological footprint and identify the ‘component, solid waste life cycle assessment approach’ as one that overcomes data limitations by using data many cities regularly collect: municipal, solid waste composition data which serves as a proxy for material consumption. The approach requires energy use and/or carbon dioxide emissions data from process LCA studies as well as agricultural and forest land data for calculation of a material’s ecological footprint conversion value. We reviewed the process LCA literature for twelve materials commonly consumed in cities and determined ecological footprint conversion values for each. We found a limited number of original LCA studies but were able to generate a range of values for each material. Our set of values highlights the importance for cities to identify both the quantities consumed and per unit production impacts of a material. Some materials like textiles and aluminum have high ecological footprints but make up relatively smaller proportions of urban waste streams than products like paper and diapers. Local government use of the solid waste LCA approach helps to clearly identify the ecological loads associated with the waste they manage on behalf of their residents. This direct connection can be used to communicate to citizens about stewardship, recycling and ecologically responsible consumption choices that contribute to urban sustainability.
TJ807-830, 710, ecological footprint analysis, Urban sustainability, TD194-195, Renewable energy sources, Life cycle assessment, life cycle assessment, GE1-350, Waste management, Environmental effects of industries and plants, urban sustainability; ecological footprint analysis; life cycle assessment; material consumption; waste management, Ecological footprint analysis, Material consumption, Environmental sciences, urban sustainability, material consumption, waste management, jel: jel:Q, jel: jel:Q0, jel: jel:Q2, jel: jel:Q3, jel: jel:Q5, jel: jel:O13, jel: jel:Q56
TJ807-830, 710, ecological footprint analysis, Urban sustainability, TD194-195, Renewable energy sources, Life cycle assessment, life cycle assessment, GE1-350, Waste management, Environmental effects of industries and plants, urban sustainability; ecological footprint analysis; life cycle assessment; material consumption; waste management, Ecological footprint analysis, Material consumption, Environmental sciences, urban sustainability, material consumption, waste management, jel: jel:Q, jel: jel:Q0, jel: jel:Q2, jel: jel:Q3, jel: jel:Q5, jel: jel:O13, jel: jel:Q56
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).41 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
