
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The Effect of Substrate-Bulk Interaction on Hydrolysis Modeling in Anaerobic Digestion Process

doi: 10.3390/su6128348
handle: 11588/592458 , 11591/442394 , 11580/37009
In an Anaerobic Digestion (AD) process treating particulate substrates, the size of solids is expected to negatively affect the rate of hydrolysis step and consequently influence the performance of the whole process. To avoid any disadvantage due to size of solids, expensive pre-treatments aimed at disintegrating and solubilizing substrates are commonly conducted prior to AD. This practice is doubtlessly successful, but not always necessary, since some organic substrates, although particulate, once immersed in water, tend to solubilize immediately. This aspect, if properly considered, could result in saving money and time in the AD process, as well as refining the development and calibration of AD mathematical models. The present study is actually aimed at demonstrating, through experiments and mathematical simulations, different results deriving from the AD process performed, under the same operating conditions, on two different substrates, i.e. homemade pasta and carrot batons, having the same particle size, but different chemical composition and texture. Experimental outcomes highlighted the effect of particles size on bio-methane production only from the bio-methanation potential tests (BMP) conducted on carrot batons. Similar results were obtained by mathematical model calibration, i.e., different kinetic constants for differently-sized carrot batons and same kinetic constant for differently-sized homemade pasta solids.
anaerobic digestion, TJ807-830, bio-methane, TD194-195, Renewable energy sources, GE1-350, mathematical modelling, Environmental effects of industries and plants, Anaerobic Digestion, bio-methane; anaerobic digestion; hydrolysis; mathematical modelling, Environmental sciences, Anaerobic digestion; Bio-methane; Hydrolysis; Mathematical modelling, hydrolysis, jel: jel:Q, jel: jel:Q0, jel: jel:Q2, jel: jel:Q3, jel: jel:Q5, jel: jel:O13, jel: jel:Q56
anaerobic digestion, TJ807-830, bio-methane, TD194-195, Renewable energy sources, GE1-350, mathematical modelling, Environmental effects of industries and plants, Anaerobic Digestion, bio-methane; anaerobic digestion; hydrolysis; mathematical modelling, Environmental sciences, Anaerobic digestion; Bio-methane; Hydrolysis; Mathematical modelling, hydrolysis, jel: jel:Q, jel: jel:Q0, jel: jel:Q2, jel: jel:Q3, jel: jel:Q5, jel: jel:O13, jel: jel:Q56
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).26 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
