
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
GHG Emissions from the Production of Lithium-Ion Batteries for Electric Vehicles in China

doi: 10.3390/su9040504
With the mass market penetration of electric vehicles, the Greenhouse Gas (GHG) emissions associated with lithium-ion battery production has become a major concern. In this study, by establishing a life cycle assessment framework, GHG emissions from the production of lithium-ion batteries in China are estimated. The results show that for the three types of most commonly used lithium-ion batteries, the (LFP) battery, the (NMC) battery and the (LMO) battery, the GHG emissions from the production of a 28 kWh battery are 3061 kgCO2-eq, 2912 kgCO2-eq and 2705 kgCO2-eq, respectively. This implies around a 30% increase in GHG emissions from vehicle production compared with conventional vehicles. The productions of cathode materials and wrought aluminum are the dominating contributors of GHG emissions, together accounting for around three quarters of total emissions. From the perspective of process energy use, around 40% of total emissions are associated with electricity use, for which the GHG emissions in China are over two times higher than the level in the United States. According to our analysis, it is recommended that great efforts are needed to reduce the GHG emissions from battery production in China, with improving the production of cathodes as the essential measure.
- Tsinghua University China (People's Republic of)
China, Environmental effects of industries and plants, electric vehicle, TJ807-830, lithium-ion battery, TD194-195, Renewable energy sources, Environmental sciences, greenhouse gas; life cycle assessment; lithium-ion battery; electric vehicle; China, life cycle assessment, greenhouse gas, GE1-350
China, Environmental effects of industries and plants, electric vehicle, TJ807-830, lithium-ion battery, TD194-195, Renewable energy sources, Environmental sciences, greenhouse gas; life cycle assessment; lithium-ion battery; electric vehicle; China, life cycle assessment, greenhouse gas, GE1-350
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).119 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
