
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Life Cycle Analysis of Charcoal Production in Masonry Kilns with and without Carbonization Process Generated Gas Combustion

doi: 10.3390/su9091558
New technologies and emissions controls have been developed for the production of charcoal, but are not widely used in the industry. The present study seeks to evaluate the potential environmental impact of these new technologies as compared to traditional ones. A Life Cycle Assessment (LCA) of Brazilian charcoal produced with different technologies without and with the combustion of the gases in burners or furnaces was carried out. The inclusion of furnaces for the combustion of gases reduces all categories of potential environmental impacts by approximately 90% in both a circular masonry kiln and a rectangular masonry kiln with gas combustion. In the process of producing charcoal (gate-to-gate system boundary), in terms of climate change, the rectangular masonry kiln with gas combustion was approximately 63% less impactful than the circular masonry kiln with gas combustion. In the gate-to-gate analysis, the rectangular masonry kiln with gas combustion presented the best performance when not considering NO2 and SO2. Considering these emissions, there were changes in the impact categories of particulate matter emission and terrestrial acidification, and the circular masonry kiln with gas combustion presented better performance (for cradle-to-gate system boundary). The process in a rectangular masonry kiln without gas combustion presented a greater contribution to the categories of terrestrial impact ecotoxicity (98%), due to the emission of acetic acid especially.
- State University of West Paraná Brazil
- Link Campus University Italy
- Federal University of Technology – Paraná Brazil
- Link Campus University Italy
Environmental effects of industries and plants, TJ807-830, charcoal production, rectangular kiln, TD194-195, Renewable energy sources, Environmental sciences, environmental performance, charcoal production; rectangular kiln; circular kiln; life cycle assessment; environmental performance; pyrolysis gas, life cycle assessment, pyrolysis gas, GE1-350, circular kiln
Environmental effects of industries and plants, TJ807-830, charcoal production, rectangular kiln, TD194-195, Renewable energy sources, Environmental sciences, environmental performance, charcoal production; rectangular kiln; circular kiln; life cycle assessment; environmental performance; pyrolysis gas, life cycle assessment, pyrolysis gas, GE1-350, circular kiln
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).30 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
