
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Credit Optimization Algorithm for Calculating LEED Costs

doi: 10.3390/su9091607
As environmental and energy issues continue to emerge as global concerns, Leadership in Energy and Environmental Design (LEED) certification is becoming highly valued. However, since additional costs for LEED certification cannot be estimated before proceeding with certification projects, financial losses are often incurred. Additional construction costs are the most significant issue faced by enterprises aiming for LEED certification. Rough estimates of the range of additional construction costs are available, but it is difficult to identify factors that increase or decrease the price of a building. Thus, there is a need for a program that provides average data for LEED certification costs and suggests the easiest way to attain credits for a building. Considering that LEED certification is a rating system, this study develops an optimization algorithm that aims to derive the minimum score for a desired LEED level at minimal cost. Credits are studied and classified by their difficulty and the required cost, allowing for an algorithm that can suggest a customized approach to acquire the minimal required score. The practical, data-driven program developed herein helps shorten the consulting process and increases the accessibility of LEED certification.
- Samsung Korea (Republic of)
- Korea University Japan
- Samsung Korea (Republic of)
- Samsung (South Korea) Korea (Republic of)
- Korea University Korea (Republic of)
certification, Environmental effects of industries and plants, green building; LEED; credit; building energy; certification; LEED cost, TJ807-830, TD194-195, Renewable energy sources, Environmental sciences, LEED cost, green building, LEED, GE1-350, building energy, credit
certification, Environmental effects of industries and plants, green building; LEED; credit; building energy; certification; LEED cost, TJ807-830, TD194-195, Renewable energy sources, Environmental sciences, LEED cost, green building, LEED, GE1-350, building energy, credit
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).7 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
