Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Vehiclesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Vehicles
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Vehicles
Article . 2023
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Artificial Intelligence Approaches for Advanced Battery Management System in Electric Vehicle Applications: A Statistical Analysis towards Future Research Opportunities

Authors: M. S. Hossain Lipu; Md. Sazal Miah; Taskin Jamal; Tuhibur Rahman; Shaheer Ansari; Md. Siddikur Rahman; Ratil H. Ashique; +2 Authors

Artificial Intelligence Approaches for Advanced Battery Management System in Electric Vehicle Applications: A Statistical Analysis towards Future Research Opportunities

Abstract

In order to reduce carbon emissions and address global environmental concerns, the automobile industry has focused a great deal of attention on electric vehicles, or EVs. However, the performance and health of batteries can deteriorate over time, which can have a negative impact on the effectiveness of EVs. In order to improve the safety and reliability and efficiently optimize the performance of EVs, artificial intelligence (AI) approaches have received massive consideration in precise battery health diagnostics, fault analysis and thermal management. Therefore, this study analyzes and evaluates the role of AI approaches in enhancing the battery management system (BMS) in EVs. In line with that, an in-depth statistical analysis is carried out based on 78 highly relevant publications from 2014 to 2023 found in the Scopus database. The statistical analysis evaluates essential parameters such as current research trends, keyword evaluation, publishers, research classification, nation analysis, authorship, and collaboration. Moreover, state-of-the-art AI approaches are critically discussed with regard to targets, contributions, advantages, and disadvantages. Additionally, several significant problems and issues, as well as a number of crucial directives and recommendations, are provided for potential future development. The statistical analysis can guide future researchers in developing emerging BMS technology for sustainable operation and management in EVs.

Keywords

optimizations, TL1-4050, lithium-ion battery, algorithms, battery management, TJ1-1570, Mechanical engineering and machinery, TJ227-240, Machine design and drawing, electric vehicles, Motor vehicles. Aeronautics. Astronautics

Powered by OpenAIRE graph
Found an issue? Give us feedback